

Bayesian Network Modeling Applied on Railway Level Crossing Safety

Ci LIANG, 15/11/2017

Co-authors: Mohamed GHAZEL (IFSTTAR-COSYS/ESTAS) Olivier CAZIER (SNCF Réseau) Laurent BOUILLAUT (IFSTTAR-COSYS/GRETTIA) El-Miloudi EL-KOURSI (IFSTTAR-COSYS/ESTAS)

CONTENTS

PART 01 PART 02 PART 03
Introduction Present Works Contributions
& Perspective

Introduction

Introduction

- More than **118,000** LXs in the 28 countries of the E.U.;
- More than **1,200** accidents in E.U. every year;
- More than **300** deaths in E.U. per year;
- Over **15,000** LXs in France;
- Around **13,000** show heavy roads and railway traffic.

Present Works

°C

BNI-RR framework: Bayesian Network (BN) based Inference for Risk Reasoning (BNI-RR)

- Risk scenario definition
- Real field data collection and processing
- BN model establishment
 - Causality discovery
 - Causality optimizing
 - Parameter definition
- Model prediction performance validation
 - The Receiver Operating Characteristic (ROC) curve
 - The Area Under the ROC Curve (AUC)

- 1) Automated LX with 4 half barriers and lights (SAL4);
- 2) Automated LX with 2 half barriers and lights (SAL2);
- Automated LX with lights but without barriers (SALO);
- 4) Crossbuck LX.
- SAL: Signalisation Automatique Lumineuse

The main transport mode causing accidents at SAL2: motorized vehicle

"Motorized vehicles cross SAL2 LXs when trains are approaching"

Type of LX	Number	# Accident
SAL4	> 600	> 600
SAL2	> 10,000	> 4,000
SAL0	> 60	> 50
Crossbuck LX	> 3,000	> 700

Table 1. Accidents at French LXs during the last 40 years

(c) SAL0

(d) Crossbuck LX

Database 1 (D1): accident 2004-2013

> Get all static parameters we want to analyze;

➤ Fatalities and injuries;

>No accident causes and no relationship between human factors and accidents;

Database 2 (D2): accident 2010 – 2013

> Including accident causes: zigzag, alignment, etc.

Lack of static parameters for each LX :

Using LX ID, line ID and Date to make data merging

A new database, named ND, 2010 - 2013: 1) the LX accident information, 2) static railway, roadway and LX characteristics, 3) the number of fatalities and injuries, and accident causes related to static factors and motorist behavior.

Data processing

- Continuous variables -> Discretization: Railway Speed Limit, Corrected Moment, Railway Traffic Density, Road Traffic Density, Width, Length, Region risk factor; Divided into 3 groups, each group having the similar number of samples;
- Finite discrete variables: Alignment, Profile, Motorist Inappropriate Behavior, Stall on LX, Blocked on LX, Stop on LX; Each value corresponds to a state;

Introduction	Present Works	Contributions & Perspective

Definition of states of nodes

Node name	Node property	Node state
TC nodes		
		ADRT_below_9 ($0 \le ADRT < 9$),
Average Daily Railway Traffic	Chance node	$ADRT_9_25 (9 \le ADRT < 25),$
(ADRT)		$ADRT_{25}up (25 \le ADRT);$
		ADRV_below_72 ($0 \le ADRV < 72$),
Average Daily Road Vehicle	Chance node	ADRV_72_403 ($72 \le ADRV < 403$),
(ADRV)		$ADRV_403_up (403 \le ADRV);$
Blocked on LX (B)	Chance node	True, False;
Stop on LX (Stop)	Chance node	True, False;
SC nodes		
		$CM_below_{19} (0 \le CM < 19),$
Corrected Moment (CM)	Chance node	$CM_{19}49 (19 \le CM < 49),$
		$CM_49_up (49 \le CM);$
		RLS_below_70 (0 km/h \leq RLS $<$ 70 km/h),
Railway Speed Limit (RLS)	Chance node	RLS_70_110 (70 km/h \leq RLS $<$ 110 km/h),
		RLS_110_up (110 km/h \leq RLS);
Alignment (A)	Chance node	Straight, C_shape, S_shape;
Profile (P)	Chance node	Normal, Hump cavity:
		$W_{below_{5}}(0 \text{ m} \le W \le 5 \text{ m}).$
Width (W)	Chance node	$W_{5,6}$ (5 m $\leq W < 6$ m),
		W 6 up (6 m $<$ W);
		L below 7 (0 m \leq L \leq 7 m),
Length (L)	Chance node	L 7 11 (7 m \leq L $<$ 11 m),
		L 11 up (11 m \leq L):
		R low (region with low risk level).
Region Risk (R)	Chance node	R medial (region with medial risk level).
		R high (region with high risk level):
Stall on LX (Stall)	Chance node	True, False:
Zigzag Violation (ZV)	Chance node	True, False:
PriC nodes		,,
Motorist Behavior Accident	Chance node	True, False:
(MB)		
Static Factor Accident (SF)	Chance node	True, False:
Consequence nodes		,,
SAL2 MV Accident (SA)	Chance node	True, False:
Fatalities (F)	Chance node	$F_{0}(F = 0), F_{0}(p < F)$
Severe Injuries (S)	Chance node	$S = 0 = 2 (0 \le S \le 2)$, $S = S = 0 = 0 (2 \le S)$;
Minor Injuries (M)	Chance node	M 0 3 (0 \leq M \leq 3), M 3 up (3 \leq M):
Consequence Severity (CS)	Deterministic node	Level 1 Level 2 Level 3 Level 4 Level 5:
consequence serving (cs)	Deterministic node	Level, Level, Level, S, Level, T, Level, J,

PriC nodes: Primary causes;

- SC nodes: Secondary causes;
- TC nodes: Third-level causes;

Consequence nodes;

Table 3. Consequence severity definition

Consequence severity	Level 1	Level 2	Level 3	Level 4	Level 5
$0 = $ fatalities, $0 \le$ severe injuries < 2 , $0 \le$ minor injuries < 3 ;	×	-	-	-	-
$\overline{0}$ = fatalities, $0 \le$ severe injuries < 2, 3 \le minor injuries;	-	×	_	_	-
$0 =$ fatalities, $2 \le$ severe injuries, $0 \le$ minor injuries < 3;	-	-	×	_	-
$\overline{0}$ = fatalities, 2 \leq severe injuries, 3 \leq minor injuries;	-	-	-	×	-
0 < fatalities;	-	-	-	-	×

Increasing progressively from level 1 to 5; 0

BNI-RR framework

i

Present Works - BN model establishment

Causality discovery

Causal BN 0

G_c : a 3-tuple causal DAG (Directed Acyclic Graph)

 $G_{C} = \{IF, THEN, CAK\}$

IF: a set of causes, *IF*= $\{x_1, x_2, \dots, x_n\}$

THEN: a set of consequences, $THEN = \{y_1, y_2, \dots, y_m\}$

CAK (CAusal Knowledge): a set of directed pairs of the cause x_i and consequence y_i $CAK = \{(x_i, y_i) | x_i \in IF, y_i \in THEN, IF \neq \emptyset, THEN \neq \emptyset\}$ (x_i, y_j) : a directed variable pair that describes the structure of $G_C: x_i \to y_j$

BN = (P, G)

G = (N, L)

CPT in Node B_1

Node B

States of B_1 and B_2

States of A

CPT in Node B_2

Node B₂

CPT in Node A

 $P(A=1|B_1=0, B_2=1)$

DAG \mathcal{G}

Node A

e.g., $G_C = \{IF = \{B_1, B_2\}, THEN = \{A\}, CAK = \{(B_1, A), (B_2, A)\}\}$

Preliminary causality discovery: automatic structure learning

- The Bayesian Search (BS) algorithm
- The Essential Graph Search (EGS) algorithm
- The Greedy Thick Thinning (GTT) algorithm
- The Naive Bayes approach
- The Augmented Naive Bayes (ANB) algorithm
- The Tree Augmented Naive Bayes (TAN) algorithm

Shortcomings:

- inconsistent with the causal relationships in reality;
- more likely correlations rather than causalities in reality;
- impede identification of important causes;

BNI-RR framework

i

Present Works - BN model establishment

Causality optimizing

- **Causal structural constraints (CSCs) : expert knowledge** 0
- \blacktriangleright Definition of 3 types of directed CSCs: $x \in IF, y \in THEN$
 - \checkmark Existence Constraint (EC), $(x, y)_e$ Must be a direct connection from *x* to *y*;
 - ✓ Forbidden Constraint (FC), $(x, y)_f$

Must not be a direct connection from x to y;

Potential Directed Constraint (PDC), $(x, y)_p$ \checkmark If there exists a direct connection between x and y, it should be from x to y;

Present Works - BN model establishment

Model structuring

Causal structural constraints (CSCs) : expert knowledge

Fig. 2. CSCs identified for our BN risk model

Conditional probability parameters: generated directly from our field data 0

- Layer 1: cause diagnosis
 - Part1: static factor network (SFN);
 - Part2: motorist behavior factor network (MBFN);

- Layer 2: evaluating consequences
 - Fatalities, Severe Injuries, Minor Injuries;
 - **Consequence severity;**

- Receiver Operating Characteristic (ROC) curve and the Area Under the ROC Curve (AUC)
- 1) If AUC = 1, a perfect prediction model.
- 2) If 0.5 < AUC < 1, better than random guessing and has relatively sound predictive value;
- 3) If AUC = 0.5, the same as random guessing, for example, throwing coin, having no predictive value;
- 4) Otherwise, AUC < 0.5, worse than random guessing and valueless;
 - The ideal perfect ROC curve is a point (0, 1);
 - The closer the AUC to 1, the better the performance of a prediction model.

Model performance validation

Table 4. Comparison of entire prediction performance

Approach	SA	F	S	M	The closer to 1, the better;
	$ACCU, AUC_T, AUC_F$	ACCU, AUC ₀ , AUC _{0,µp}	$ACCU, AUC_{0,2}, AUC_{2,up}$	ACCU, AUC_{0_3} , $AUC_{3_{up}}$	
Our model	0.9963, 0.9846, 0.9846	0.9801, 0.9964, 0.9964	0.9982, 0.9929, 0.9929	0.9913, 0.9963, 0.9963	
BS	0.8751, 0.9187, 0.9187	0.8101, 0.5708, 0.5708	0.8638, 0.9541, 0.9541	0.8657, 0.9683, 0.9683	
EGS	0.9134, 0.8857, 0.8857	0.9203, 0.8306, 0.8306	0.8509, 0.7790, 0.8509	0.8917, 0.8157, 0.8157	
GTT	0.8706, 0.8216, 0.8216	0.8610, 0.8213, 0.8213	0.8704, 0.7126, 0.7126	0.8713, 0.8315, 0.8315	
NB	0.6356, 0.5163, 0.5163	0.7704, 0.5856, 0.5856	0.8333, 0.6012, 0.6012	0.6181, 0.2015, 0.2015	
ANB	0.9287, 0.9015, 0.9015	0.9516, 0.9340, 0.9340	0.9287, 0.9111, 0.9111	0.9414, 0.9202, 0.9202	
TAN	0.9539, 0.9431, 0.9431	0.9636, 0.9616, 0.9616	0.9891, 0.9680, 0.9680	0.9847, 0.9794, 0.9794	
ACCU: acc	curacy;				

Table 5. Comparison of prediction performance for accident/consequence occurrence

0.75
674 0.1250
510 0.1250
613 0.1250
182 0
0.2500
742 0
))))

The closer to 1, the better;

*Note that: the sample size of single accident related to "severe injuries more than 2" and "minor injuries more than 3" is small in reality, which lead to the lower accuracy.

Forward inference and reverse inference

Fig. 5. Cause diagnosis when a train-MV accident occurs (reverse inference)

Fig. 4. General prediction (forward inference)

SAL2_MV_	Accident	Static_Fac	tor_Accident	Motorist_E	Behavior_A
False	0.99390817	False	0.99894278	False	0.995115
True	0.0060918269	🗌 True	0.0010572159	True	0.00488434
Fatalities		Severe_Injuries		Minor_Injuries	
F_0	0.99931467	S_0_2	0.99987146	M_0_3	0.99979
F_0_up	0.00068533053	S_2_up	0.00012853755	M_3_up	0.00020468
Consequer	nce_Severity				
Level_1	0.99902277				
Level_2	0.00017782529				

 $^{\circ}$

 \odot

Introduction

Influence strength analysis

The impact level of parent nodes on corresponding child nodes;

- **Consequence:**
- Fatalities: strongest influence;
- SAL2 accident occurrence: Inappropriate motorist behavior: strongest influence;
 - Static factors:

Region risk factor: strongest influence;

 inappropriate motorist behavior: Zigzag violation: strongest influence;

20

Contributions & Perspective

Contributions & Perspective - Contributions

 An effective and comprehensive modeling framework for risk reasoning: BNI-RR;

 A thorough performance validation process; CSCs based on the concept of CAK for empirical knowledge;

✓ Forward inference and reverse inference analysis; ✓ Influence strength analysis;

Valuable reference

Accident prediction &cause diagnosis

Identifying targeted practical design measures & improvement recommendations;

2

4

3

THANK YOU FOR YOUR ATTENTION!

Bayesian Network Modeling Applied on Railway Level Crossing Safety

Project: MORIPAN: MOdèle de RIsque pour les PAssages à Niveau

Ci LIANG, 15/11/2017